Virtual i-O Windows 95 Direct Input Driver

This document describes the details of the Virtual i-O Headset for use with the Direct Input drivers for Windows 95. This structure is created to utilize the headset as a joystick type device, and as Direct Input adopts true 360(values for devices other than joysticks, the Virtual i-O drivers will be updated to reflect that support as well.

Identifying the Headset

In the path you extracted the files to there are examples of code used with Direct Input and the ViO VxD, joystick mini driver. The following are samples of code listed in DirectInp.c:

ViODeviceCK(): This function checks to see if the VxD has been loaded via the add new hardware application under control panel. If it finds “ViO” listed under supported joysticks CheckDeviceStr() returns a 1, else it returns a 0.

Example 1 illustrates the a fragment of the code that a developer would use to identify the existence of the headtracker.

ReadViO(): This function calls GetJoyPosEx, with the ID of the headtracker. This gets back the Yaw, Pitch, and Roll values for your use.

 Example 2 demonstrates how to retrieve the headsets Yaw, Pitch, and Roll values.

Basic Tracker orientation

All orientation descriptions are from the perspective of someone actually wearing the Tracker:

Positive yaw is defined as a left head rotation.

Positive pitch is an upward head tilt.

Positive roll is a left head tilt.

� EMBED Word.Picture.6 ���

The coordinate system used is +Y up, +Z out, and +X right (The positive axes can be formed with the right-hand index, middle finger, and thumb: a right-handed coordinate system. See Computer Graphics, principles and practice, by Foley et al for more information on coordinate systems).

Coordinate reporting using Mode 1: Cooked data mode

This section offers a review of the Cooked data mode utilized by the Windows 96 VxD and Direct Input drivers. This same information can be found inside the Dos Based Developers Kit for the PC.

The Tracker scales the magnetic vector, centering it about the zero, and linearizes the tilt sensor readings based on internal factory calibration constants. This is the mode to use when performing the angle computation on the host. The data format is signed 16-bit words. The x, y, and z magnetometer readings are approximately +/- 16384 (This varies with the Earth’s magnetic field). The pitch and roll readings are converted to linear values where +16384 = 180 degrees and -16384 = - 180 degrees.

To convert to floating point: degrees = (float)reading/16384.0*180.0. A provided C library routine converts the cooked data values into yaw, pitch, and roll.

Data packet format for mode 1 (Binary)

The total packet size is 12 bytes. The byte format is:

	Byte	Description

	0	Header (always 255)

	1	X-axis high byte

	2	X-axis low byte

	3	Y-axis high byte

	4	Y-axis low byte

	5	Z-axis high byte

	6	Z-axis low byte

	7	Pitch high byte

	8	Pitch low byte

	9	Roll high byte

	 10	Roll low byte

 11	Arithmetic checksum (Bytes 0-10 added together)

Send mode for data mode 1

The send modes for data mode 1 are ‘P’ for Polled and ‘C’ for Continuous. In continuous mode, a ‘!’<CR> command stops the stream and the ‘S’ command restarts it. To read data in continuous mode, the application searches for a start header (255). Once found, the rest of the packet must be read in, the checksum computed and compared to the packet’s checksum. If the checksums don’t match, the application must reread the data one byte beyond where it last found a 255 and start the process over again. Alternatively, the application can stop the stream with a ‘!’<CR>, pause a few character send times, flush its read buffers, then send an ‘S’ and begin reading the stream. Continuous mode is not recommended for commercial applications (error recovery is difficult and serial interrupts and CPU cycles are wasted).

Utilizing the HMD coordinates with Direct Input

The ReadViO() function calls GetJoyPosEx, with the ID of the headtracker. This gets back the Yaw, Pitch, and Roll values for your use inside Windows 95.

 Example 2 demonstrates how to retrieve the headsets Yaw, Pitch, and Roll values.

Giving that the Virtual i-O Direct Input driver will return values of +/- 16384. A function call to JOYINFOEX will return the Yaw, pitch, and Roll elements of the JOY_INFOEX structure respectively. Positive Yaw motions turning toward your right, positive pitch motions looking up, and positive roll motions turning your right ear downward toward your right shoulder.

Example 1 - Finding the HMD

The following code fragment illustrates how to determine if the Virtual i-O headset VxDis installed.

DWORD HMDId;

DWORD Yaw, Pitch, Roll;

// Check to see if the ViO headset VxD has been installed.

//

UINT ViODeviceCK()

{

UINT cbjc;

JOYCAPS ViOcaps;

 for(HMDId=0; HMDId < 16; HMDId++)

 if(ViORegCk(HMDId, "ViO")) break;

 cbjc = sizeof(JOYCAPS);

 result = joyGetDevCaps(HMDId, &pjc, cbjc);

 if(!result) {

 			//store initial returned data here if you like to

// specialize any values, i.e. centering, etc...

		 return(True);

 }

	 else

		 return(FALSE);

}

Example 2 - Retrieving Data

// Poll the Tracker as a direct input joystick device.

// JoyId for tracker will be “ViO”

// ViOPoll will return the Tracker Yaw, Pitch and Roll

void ReadViO()

{

	ViOPoll(JoyId, &HMDRoll, &HMDPitch, &HMDYaw);

	

}

In the file ViO95.c there are examples for performing each of the HMD Commands.

�PAGE �

�PAGE �1�

� DATE �09/30/96�	Virtual i-O, Inc.	

